На основе полиариленимидов получают высокомодульные, высокопрочные, высокотермостойкие материалы. Однако применение полиимидов ограничивает их жесткость и неспособность к переработке. За последние 10 лет стали появляться работы, посвященные модификации полиимидов, синтезу имидных блок-сополимеров. Введение гибкого блока в полиимидную цепь сообщает имидному материалу новые интересные свойства: полибутадиеновые [1, 2] и полиэтиленоксидные [3] блоки увеличивают, например, гибкость и способность к переработке имидного материала. В настоящей работе описаны синтез, структура и некоторые свойства трехблочных метилтииранимидметилтиирановых блок-сополимеров.
Синтез метилтииран-амидокислотных блок-сополимеров проводили аналогично синтезу бутадиенамидокислотных блок-сополимеров [1]. К раствору олигометилтиирана (М=1000) с концевой аминогруппой (OMT-NH2) [4] в ДМФА добавляли 4,4'-диаминодифениловый эфир (ДАДФЭ), после растворения которого двумя порциями присыпали рассчитанное количество диапгидрида. Полученный блок-сополимер высаживали в этанол, отмывали от гомополиметилтиирана бензолом, от гомополиамидокислоты (ПАК) смесью ДМАА: этанол=0,23: 0,77. Численные данные суммированы в табл.1.
Турбидиметрическое титрование проводили на установке, основная составная часть которой - фотоэлектрический колориметр-нефелометр ФЭК-56, по методике, описанной в работе [5].
Для изучения блок-сополимеров методом светорассеяния использовали фотогопиодиффузометр фирмы "Sofica" и методику [6]. ТГА проводили на дериватографе при нагревании образцов в керамическом тигле на воздухе со скоростью 4,5 град/мин. .
Термомеханические кривые снимали на приборе, описанном в работе [7].
Процесс анионной полимеризации метилтиирана достаточно хорошо изучен [8, 9] и характеризуется безобрывным протеканием по механизму "живых" полимерных цепей с полным использованием инициатора. Это позволяет получить полимеры с заданной ММ и узким ММР (Мω/ Mn= 1,1-1,5). Для синтеза блок-сополимеров необходимо было получить ОМТ с концевой изоцианатной группой. По аналогии с известными реакциями гидроксилсодержащих олигомеров (рис.1, а) можно ожидать, что SH-группы "мертвого" ОМТ, получаемые при обрыве процесса полимеризации метилтиирана сокаталитическим количеством метанола, будут взаимодействовать с изоцианатной группой толуилендиизоцианата (ТДИ).
Изучение этой реакции методом ИК-спектроскопии по убыли интенсивности полосы изоцианатной группы (2260 см-1) показало, что в сравнении с аналогичной реакцией ТДИ с полиэтиленоксидом (рис.1, а) при прочих равных условиях реакционная способность SH-групп ОМТ очень мала (рис.1,6). В этой связи использование олигомера такого типа для дальнейшего синтеза не представлялось целесообразным.
Однако спектроскопический контроль реакции,"живого" ОМТ с ТДИ при [ТДИ]: [BuLijSs] показал мгновенное исчезновение изоцианатной полосы с одновременным появлением полосы карбонильной группы (1720 см-1) (рис.1, в). Полное исчезновение полосы 2260 см-1 доказывает, что в реакцию с "живыми" ОМТ (схема, I) вступает не одна, а обе изоцианатные группы ТДИ.
Рис.1. ИК-спектры раствора смеси ТДИ с полиэтиленоксидом (а), "мертвым" (б) и "живым" (в) ОМТ в ТГФ при [ТДИ]: [BuLi] =l: Л. а: 1 - начало реакции; 2,3 - через 15 и 30 мин; 4 - через 1 ч после начала реакции; 6: 1 - начало реакции; 2,3 - через 3 и 6 ч после начала реакции; в: 1 - до начала реакции, 2 - через 3 мин после начала реакции
Однако дальнейшее взаимодействие продукта реакции с ДАДФЭ и последующее образование блок-сополимеров доказывает, что вторая изоцианатная группа ТДИ остается реакционноспособной. Это кажущееся противоречие заставило предположить возможность протекания реакции "живого" ОМТ с ТДИ с образованием продукта внутримолекулярной циклизации в молекуле ТДИ (схема, III). Правомочность подобного предположения подтверждается данными работы [10], в которой показано, что при полимеризации алифатических диизоцианатов под влиянием нуклеофильных агентов образуются линейные растворимые полимеры с повторяющимися циклическими звеньями в цепи.
Совершенно неожиданным оказалось то, что выход блок-сополимера и содержание метилтиирана в нем в значительной степени зависят от способа выделения и времени хранения OMT-NH2. В том случае, когда стадия выделения OMT-NH2 отсутствовала, т.е. синтез блок-сополимеров проводили по способу, наиболее приближенному к описанному в работе [1], метилтииранамидокислотный блок-сополимер был разделен на 2 фракции: с большим (табл.1, сополимер 1а) и меньшим (сополимер 16) содержанием метилтиирановых блоков. OMT-NH2 после месячного хранения в холодильнике давал наименьшее вхождение метилтиирановых блоков в блок-сополимер (сополимер 2). Употребление OMT-NH2 сразу после его выделения приводило к более высокому содержанию метилтииранового блока в блок-сополимере (сополимеры 3,4), но отгонка ТГФ в разных условиях (в присутствии следов влаги и в контакте с воздухом (сополимер 3) и в безвоздушной и безводной среде (сополимер 4)) давала разные результаты. В первом случае выход блок-сополимера и содержание метилтиирановых блоков в нем в 1,5 раза меньше, чем во втором.
Предметы
Актуальные Статьи по технологиям машиностроения