Оглавление
1.1 Активные угли их строение, физико-химические свойства, проблемы прочности
.2 Особенности активных углей на торфяной основе
.3 Проблемы накопления полиуретановых отходов в мире
.4 Утилизация и вторичная переработка отходов производства полиуретанов
.5 Термическая деструкция гетероцепных полимеров (полиуретана)
Список литературы
1.1. Активные угли их строение, физико-химические свойства, проблемы прочности
В первые десятилетия ХХ века активный уголь принимали за аморфную разновидность углерода. Несмотря на то, что электронные микрофотографии позволяют различать рыхлую структуру, состоящую из мельчайших углеродных частиц диаметром около 3 нм, только рентгеноструктурный анализ Гофманна [83, 85] впервые показал, что эти частицы представляют собой кристаллиты размерами 1-3 нм. В связи с этим в настоящее время активный уголь относят к группе микрокристаллических разновидностей углерода.
Существует три основных гибридных состояния атомов углерода: - sр-, sр2- sр3-. Соответственно, выделяют следующие основные аллотропные модификации: карбин, лонсдейлит [55], графит и алмаз. Стоит отметить, что благодаря промежуточному характеру гибридизации, присутствию гетероатомов, возможности одновременного сосуществования разных гибридных форм углерода возможно наличие большого количества других форм углеродных материалов [12, 52].
Благодаря рентгеноструктурному анализу было установлено, что графитовые кристаллиты состоят из плоскостей протяженностью 2-3 нм, образованных шестичленными кольцами, типичная для графита ориентация отдельных плоскостей решетки относительно друг друга нарушена. Это означает, что в активных углях слои беспорядочно сдвинуты относительно друг друга и не совпадают в направлении, перпендикулярном плоскости слоев. Расстояние между слоями больше, чем у графита (0,3354 нм) и составляет от 0,344 до 0,365 нм. Диаметр заключенного в одной плоскости строительного элемента составляет 2,0-2,5 нм, а иногда и больше. Высота пачки слоев равна 1,0-1,3 нм. Таким образом, графитовые кристаллиты в активном угле содержат 3-4 параллельных углеродных слоя.
В настоящее время среди различных моделей строения переходных форм углерода, к которым относят активные угли, наиболее распростряненными являются две модели - пачечно-бахромчатая модель Касаточкина (или "паучок") и турбостратная модель Уоррена. Согласно этим моделям, активные угли представляются углеродными телами, образованными графитоподобными кристаллитами (микрофибриллами), имеющими турбостратную структуру, и аморфным углеродом. Такого мнения придерживаются авторы многих литературных источников [33, 34, 52, 56]. Понятие турбостратной структуры включает наличие трехмерной разупорядоченности паралельных друг другу графитоподобных плоскостей. Две возможные структуры графита с идеально упорядоченными двуслойной и трехслойной упаковками - гексагональная и ромбоэдрическая характеризуются наличием паралельных плоских сеток, образованных шестичленными кольцами атомов углерода, находящегося в эр-гибридном состоянии. Межплоскостное расстояние для графита - 3, 354 А. Графитоподобные сетки в активных углях по-разному повернуты относительно нормали к плоскости сеток [67], а углеродные атомы находятся в промежуточном между sр- и sр2- гибридными состояниями. Долю неидеально упакованных плоскостей в зависимости от межплоскостного расстояния можно рассчитать по формуле Бэкона, приводимой авторами
[52,56]: d002 = 3,440 - 0,86(1 - р) - 0,064(р - 1),
где d002 - среднее межплоскостное расстояние в А, р - доля плоскостей, неупорядоченно расположенных или, по-другому, находящихся в турбостратном состоянии плоскостей. Для полностью упорядоченного состояния р = 0 и d002 = 3,354 А, для полностью неупорядоченного р =1 и d002 = 3,440 А. Реальные межплоскостные расстояния, определенные рентгенографическим методом в активных углях, по разным данным составляють 3,44 - 3,65 [52], 3,44 - 3,7 [56], 3,42 - 4,14 [48], 3,4-4 [23,27] А.
Плоскости углеродных сеток связаны между собой силами Ван-Дер-Ваальса [52,56] и боковыми сшивками, образованными гетероатомами и водородными связями [12]. Межкристаллитное пространство заполнено аморфным углеродом, т.е. углеродными цепочками нерегуляного строения с sр3- и sр- гибридизацией.
Химическим подтверждением графитной структуры активных углей является возможность образования соединений внедрения; так, Фреденхагену [78] удалось получить соединения щелочного металла с графитом, а Руфф [106] получил фторированный графит.
Вследствие присутствия упорядоченной графитной структуры активные угли обычно характеризуются заметной электрической проводимостью. Проводимость углей находится в зависимости от температуры активирования: возрастает при высоких температурах, так как при этом удаляются действующие в качестве изоляторов поверхностные кислородные соединения и образуются более крупные элементарные кристаллиты [71].
Предметы
Актуальные Учебные пособия по химии