Складність методів вирішення проблеми дискретного логарифмування в групі точок еліптичної кривої - Реферат по математике
Тезисы:
- Стійкість заснована на складності розв’язання задачі дискретного логарифмування.
- За допомогою алгоритму Кантора у підгрупі може бути вирішена за групових операцій.
- При приходимо до якобіану ізоморфної кривої з експонентною складністю розв’язання .
- При цьому й , а рід гіпереліптичної кривої набагато перевищує граничне значення 1024.
- Рисунок 2 - Геометрична ілюстрація методу ділення точок кривої на два.
- Неважко переконатися, що для підгрупи точок цієї кривої порядку коренем рівняння.
- Крива поле дискретний логарифмування атака.
- Під час використання формул даного виду можна зменшити складність криптоаналізу.
- Номери цих точок з їх -координатами зберігаються в пам'яті.
- Обчислювальна складність методу оцінюється як середнє число малих кроків.